Haseeb is going to play a tennis match and a squash match.
The probability he wins the tennis match is $\frac{7}{10}$.
The probability he wins the squash match is $\frac{3}{5}$. Complete the probability tree diagram.

Calculate the probability that Haseeb will lose both matches.

Jo walks to school everyday.
The probability Jo is late on a Monday is 0.4 .
The probability Jo is late on a Tuesday is 0.2 .
Complete the probability tree diagram.

Workout the probability that Jo is late on only one of the days.

There are 4 black pens, 4 blue pens and 2 red pens in a pack.

Julia takes at random a pen from the pack notes the colour and puts it back in the pack.

Work out the probability she selects two pens the same colour.

Haseeb is going to play a tennis match and a squash match.
The probability he wins the tennis match is $\frac{7}{10}$.
The probability he wins the squash match is $\frac{3}{5}$. Complete the probability tree diagram.

Calculate the probability that Haseeb will lose both matches.

$$
\frac{3}{10} \times \frac{2}{5}=\frac{6}{50}=\frac{3}{25}
$$

Jo walks to school everyday.
The probability Jo is late on a Monday is 0.4
The probability Jo is late on a Tuesday is 0.2
Complete the probability tree diagram.

Workout the probability that Jo is late on only one of
the days. $P($ Late, Not Late $)=0.4 \times 0.8=0.32$

$$
P(\text { Not Late, Late })=0.6 \times 0.2=0.12
$$

$P($ Late One Day $)=0.32+0.12$ Silver $=0.44$

There are 4 black pens, 4 blue pens and 2 red pens in a pack.
Julia takes at random a pen from the pack notes the colour and puts it back in the pack.
Work out the probability she selects two pens the same colour.

$$
\begin{aligned}
P(\text { Black, Black }) & =\frac{4}{10} \times \frac{4}{10}=\frac{16}{100} \\
P(\text { Blue, Blue }) & =\frac{4}{10} \times \frac{4}{10}=\frac{16}{100} \\
P(\text { Red }, \text { Red }) & =\frac{2}{10} \times \frac{2}{10}=\frac{4}{100} \\
P(\text { Same Colour }) & =\frac{16}{100}+\frac{16}{100}+\frac{4}{100} \\
& =\frac{36}{100}=\frac{18}{50}=\frac{9}{25}
\end{aligned}
$$

